
Chapter 7

Python for Cloud

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Outline

• Python for Amazon Web Services
• Python for Google Cloud
• Python for Windows Azure
• Python for MapReduce
• Python Packages of Interest
• Python Web Application Framework - Django
• Development with Django

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Amazon EC2 – Python Example

• Boto is a Python package that provides interfaces to Amazon Web Services (AWS)

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

#Python program for launching an EC2 instance
import boto.ec2
from time import sleep
ACCESS_KEY="<enter access key>"
SECRET_KEY="<enter secret key>"

REGION="us-east-1"
AMI_ID = "ami-d0f89fb9"
EC2_KEY_HANDLE = "<enter key handle>"
INSTANCE_TYPE="t1.micro"
SECGROUP_HANDLE="default"

conn = boto.ec2.connect_to_region(REGION, aws_access_key_id=ACCESS_KEY,
 aws_secret_access_key=SECRET_KEY)

reservation = conn.run_instances(image_id=AMI_ID, key_name=EC2_KEY_HANDLE,
 instance_type=INSTANCE_TYPE,
 security_groups = [SECGROUP_HANDLE,])

• In this example, a connection to EC2 service is fi
rst established by calling
boto.ec2.connect_to_region.

• The EC2 region, AWS access key and AWS secret
key are passed to this function. After connecting
to EC2 , a new instance is launched using the
conn.run_instances function.

• The AMI-ID, instance type, EC2 key handle and
security group are passed to this function.

Amazon AutoScaling – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

#Python program for creating an AutoScaling group (code excerpt)
import boto.ec2.autoscale
:
print "Connecting to Autoscaling Service"
conn = boto.ec2.autoscale.connect_to_region(REGION,
 aws_access_key_id=ACCESS_KEY,
 aws_secret_access_key=SECRET_KEY)

print "Creating launch configuration"

lc = LaunchConfiguration(name='My-Launch-Config-2',
image_id=AMI_ID,
key_name=EC2_KEY_HANDLE,
instance_type=INSTANCE_TYPE,
security_groups = [SECGROUP_HANDLE,])

conn.create_launch_configuration(lc)

print "Creating auto-scaling group"

ag = AutoScalingGroup(group_name='My-Group',
 availability_zones=['us-east-1b'],
 launch_config=lc, min_size=1, max_size=2,
 connection=conn)
conn.create_auto_scaling_group(ag)

• AutoScaling Service
• A connection to AutoScaling service is first established by

calling boto.ec2.autoscale.connect_to_region function.

• Launch Configuration
• After connecting to AutoScaling service, a new launch

configuration is created by calling
conn.create_launch_con f iguration. Launch configuration
contains instructions on how to launch new instances
including the AMI-ID, instance type, security groups, etc.

• AutoScaling Group
• After creating a launch configuration, it is then associated

with a new AutoScaling group. AutoScaling group is
created by calling conn.create_auto_scaling_group. The
settings for AutoScaling group such as the maximum and
minimum number of instances in the group, the launch
configuration, availability zones, optional load balancer to
use with the group, etc.

Amazon AutoScaling – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

#Creating auto-scaling policies

scale_up_policy = ScalingPolicy(name='scale_up',
adjustment_type='ChangeInCapacity',
as_name='My-Group',
scaling_adjustment=1,
cooldown=180)

scale_down_policy = ScalingPolicy(name='scale_down',
adjustment_type='ChangeInCapacity',

 as_name='My-Group',
scaling_adjustment=-1,
cooldown=180)

conn.create_scaling_policy(scale_up_policy)
conn.create_scaling_policy(scale_down_policy)

• AutoScaling Policies
• After creating an AutoScaling group, the policies for

scaling up and scaling down are defined.
• In this example, a scale up policy with adjustment type

ChangeInCapacity and scaling_ad justment = 1 is
defined.

• Similarly a scale down policy with adjustment type
ChangeInCapacity and scaling_ad justment = -1 is
defined.

Amazon AutoScaling – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

#Connecting to CloudWatch
cloudwatch = boto.ec2.cloudwatch.connect_to_region(REGION,

 aws_access_key_id=ACCESS_KEY,
 aws_secret_access_key=SECRET_KEY)

alarm_dimensions = {"AutoScalingGroupName": 'My-Group'}

#Creating scale-up alarm
scale_up_alarm = MetricAlarm(
 name='scale_up_on_cpu', namespace='AWS/EC2',
 metric='CPUUtilization', statistic='Average',
 comparison='>', threshold='70',
 period='60', evaluation_periods=2,
 alarm_actions=[scale_up_policy.policy_arn],
 dimensions=alarm_dimensions)
cloudwatch.create_alarm(scale_up_alarm)

#Creating scale-down alarm
scale_down_alarm = MetricAlarm(
 name='scale_down_on_cpu', namespace='AWS/EC2',
 metric='CPUUtilization', statistic='Average',
 comparison='<', threshold='40',
 period='60', evaluation_periods=2,
 alarm_actions=[scale_down_policy.policy_arn],
 dimensions=alarm_dimensions)
cloudwatch.create_alarm(scale_down_alarm)

• CloudWatch Alarms
• With the scaling policies defined, the next step is to

create Amazon CloudWatch alarms that trigger these
policies.

• The scale up alarm is defined using the CPUUtilization
metric with the Average statistic and threshold greater
70% for a period of 60 sec. The scale up policy created
previously is associated with this alarm. This alarm is
triggered when the average CPU utilization of the
instances in the group becomes greater than 70% for
more than 60 seconds.

• The scale down alarm is defined in a similar manner
with a threshold less than 50%.

Amazon S3 – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Python program for uploading a file to an S3 bucket
import boto.s3

conn = boto.connect_s3(aws_access_key_id='<enter>',
 aws_secret_access_key='<enter>')

def percent_cb(complete, total):
 print ('.')

def upload_to_s3_bucket_path(bucketname, path, filename):
mybucket = conn.get_bucket(bucketname)
fullkeyname=os.path.join(path,filename)
key = mybucket.new_key(fullkeyname)
key.set_contents_from_filename(filename, cb=percent_cb, num_cb=10)

• In this example, a connection to S3 service is first established by calling boto.connect_s3 function.

• The upload_to_s3_bucket_path function uploads the file to the S3 bucket specified at the specified
path.

Amazon RDS – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

#Python program for launching an RDS instance (excerpt)
import boto.rds

ACCESS_KEY="<enter>"
SECRET_KEY="<enter>"
REGION="us-east-1"
INSTANCE_TYPE="db.t1.micro"
ID = "MySQL-db-instance-3"
USERNAME = 'root'
PASSWORD = 'password'
DB_PORT = 3306
DB_SIZE = 5
DB_ENGINE = 'MySQL5.1'
DB_NAME = 'mytestdb'
SECGROUP_HANDLE="default"

#Connecting to RDS
conn = boto.rds.connect_to_region(REGION,
 aws_access_key_id=ACCESS_KEY,
 aws_secret_access_key=SECRET_KEY)

#Creating an RDS instance
db = conn.create_dbinstance(ID, DB_SIZE, INSTANCE_TYPE,
USERNAME, PASSWORD, port=DB_PORT, engine=DB_ENGINE,
db_name=DB_NAME, security_groups = [SECGROUP_HANDLE,])

• In this example, a connection to RDS service is first
established by calling boto.rds.connect_to_region
function.

• The RDS region, AWS access key and AWS secret key
are passed to this function.

• After connecting to RDS service, the
conn.create_dbinstance function is called to launch a
new RDS instance.

• The input parameters to this function include the
instance ID, database size, instance type, database
username, database password, database port,
database engine (e.g. MySQL5.1), database name,
security groups, etc.

Amazon DynamoDB – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Python program for creating a DynamoDB table (excerpt)
import boto.dynamodb

ACCESS_KEY="<enter>"
SECRET_KEY="<enter>"
REGION="us-east-1"

#Connecting to DynamoDB
conn = boto.dynamodb.connect_to_region(REGION,
 aws_access_key_id=ACCESS_KEY,
 aws_secret_access_key=SECRET_KEY)

table_schema = conn.create_schema(
 hash_key_name='msgid',
 hash_key_proto_value=str,
 range_key_name='date',
 range_key_proto_value=str
)

#Creating table with schema
table = conn.create_table(
 name='my-test-table',
 schema=table_schema,
 read_units=1,
 write_units=1
)

• In this example, a connection to DynamoDB service is
first established by calling
boto.dynamodb.connect_to_region.

• After connecting to DynamoDB service, a schema for
the new table is created by calling
conn.create_schema.

• The schema includes the hash key and range key
names and types.

• A DynamoDB table is then created by calling
conn.create_table function with the table schema,
read units and write units as input parameters.

 Google Compute Engine – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Python program for launching a GCE instance (excerpt)
API_VERSION = 'v1beta15'
GCE_SCOPE = 'https://www.googleapis.com/auth/compute'
GCE_URL = 'https://www.googleapis.com/compute/%s/projects/' % (API_VERSION)
DEFAULT_ZONE = 'us-central1-b'
CLIENT_SECRETS = 'client_secrets.json'
OAUTH2_STORAGE = 'oauth2.dat'

def main():
 #OAuth 2.0 authorization.
 flow = flow_from_clientsecrets(CLIENT_SECRETS, scope=GCE_SCOPE)
 storage = Storage(OAUTH2_STORAGE)
 credentials = storage.get()

 if credentials is None or credentials.invalid:
 credentials = run(flow, storage)
 http = httplib2.Http()
 auth_http = credentials.authorize(http)

 gce_service = build('compute', API_VERSION)

Create the instance
 request = gce_service.instances().insert(project=PROJECT_ID, body=instance,
 zone=DEFAULT_ZONE)
 response = request.execute(auth_http)

• This example uses the OAuth 2.0 scope
(https://www.googleapis.com/auth/compute)
and credentials in the credentials file to request
a refresh and access token, which is then stored
in the oauth2.dat file.

• After completing the OAuth authorization, an
instance of the Google Compute Engine service
is obtained.

• To launch a new instance the instances().insert
method of the Google Compute Engine API is
used.

• The request body to this method contains the
properties such as instance name, machine
type, zone, network interfaces, etc., specified in
JSON format.

 Google Cloud Storage – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Python program for uploading a file to GCS (excerpt)

def main():
 #OAuth 2.0 authorization.
 flow = flow_from_clientsecrets(CLIENT_SECRETS, scope=GS_SCOPE)
 storage = Storage(OAUTH2_STORAGE)
 credentials = storage.get()

 if credentials is None or credentials.invalid:
 credentials = run(flow, storage)
 http = httplib2.Http()
 auth_http = credentials.authorize(http)

 gs_service = build('storage', API_VERSION, http=auth_http)

Upload file
 fp= open(FILENAME,'r')
 fh = io.BytesIO(fp.read())
 media = MediaIoBaseUpload(fh, FILE_TYPE)
 request = gs_service.objects().insert(bucket=BUCKET, name=FILENAME,
 media_body=media)
 response = request.execute()

• This example uses the Oauth 2.0 scope
(https://www.googleapis.com/auth/devstora
ge.full_control) and credentials in the
credentials file to request a refresh and
access token, which is then stored in the
oauth2.dat file.

• After completing the OAuth authorization, an
instance of the Google Cloud Storage service
is obtained.

• To upload a file the objects().insert method
of the Google Cloud Storage API is used.

• The request to this method contains the
bucket name, file name and media body
containing the MediaIoBaseUpload object
created from the file contents.

 Google Cloud SQL – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Python program for launching a Google Cloud SQL instance (excerpt)

def main():
 #OAuth 2.0 authorization.
 flow = flow_from_clientsecrets(CLIENT_SECRETS, scope=GS_SCOPE)
 storage = Storage(OAUTH2_STORAGE)
 credentials = storage.get()

 if credentials is None or credentials.invalid:
 credentials = run(flow, storage)
 http = httplib2.Http()
 auth_http = credentials.authorize(http)

 gcs_service = build('sqladmin', API_VERSION, http=auth_http)

 # Define request body
 instance={"instance": "mydb",
 "project": "bahgacloud",
 "settings":{
 "tier": "D0",
 "pricingPlan": "PER_USE",
 "replicationType": "SYNCHRONOUS"}}

 # Create the instance
 request = gcs_service.instances().insert(project=PROJECT_ID, body=instance)
 response = request.execute()

• This example uses the OAuth 2.0 scope
(https://www.googleapis.com/auth/compute)
and credentials in the credentials file to request
a refresh and access token, which is then stored
in the oauth2.dat file.

• After completing the OAuth authorization, an
instance of the Google Cloud SQL service is
obtained.

• To launch a new instance the instances().insert
method of the Google Cloud SQL API is used.

• The request body of this method contains
properties such as instance, project, tier,
pricingPlan and replicationType.

 Azure Virtual Machines – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Python program for launching a Azure VM instance (excerpt)

from azure import *
sms = ServiceManagementService(subscription_id, certificate_path)
name = ‘<enter>'
location = 'West US'

Name of an os image as returned by list_os_images
image_name = '<enter>'

Destination storage account container/blob where the VM disk will be created
media_link = <enter>'

Linux VM configuration
linux_config = LinuxConfigurationSet('bahga', 'arshdeepbahga', 'Arsh~2483', True)

os_hd = OSVirtualHardDisk(image_name, media_link)

#Create instance
sms.create_virtual_machine_deployment(service_name=name,
 deployment_name=name, deployment_slot='production',
 label=name, role_name=name, system_config=linux_config,
 os_virtual_hard_disk=os_hd, role_size='Small')

• To create a virtual machine, a cloud service is fi
rst created.

• Virtual machine is created using the
create_virtual_machine_deployment method
of the Azure service management API.

 Azure Storage – Python Example

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Python example of using Azure Blob Service (excerpt)

from azure.storage import *
blob_service = BlobService(account_name=‘enter', account_key=‘<enter>’)

#Create Container
blob_service.create_container('mycontainer')

#Upload Blob
filename='images.txt'
myblob = open(filename, 'r').read()
blob_service.put_blob('mycontainer', filename, myblob,
x_ms_blob_type='BlockBlob')

#List Blobs
blobs = blob_service.list_blobs('mycontainer')
for blob in blobs:
 print(blob.name)
 print(blob.url)

#Download Blob
output_filename='output.txt'
blob = blob_service.get_blob('mycontainer', 'myblob')
with open(output_filename, 'w') as f:
 f.write(blob)

• Azure Blobs service allows you to store large
amounts of unstructured text or binary data
such as video, audio and images.

• This shows an example of using the Blob service
for storing a file.

• Blobs are organized in containers. The
create_container method is used to create a
new container.

• After creating a container the blob is uploaded
using the put_blob method.

• Blobs can be listed using the list_blobs method.

• To download a blob, the get_blob method is
used.

Python for MapReduce

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

#Inverted Index Mapper in Python

#!/usr/bin/env python
import sys
for line in sys.stdin:

doc_id, content = line.split(’’)
words = content.split()
for word in words:

print ’%s%s’ % (word, doc_id)

• The example shows inverted index mapper
program.

• The map function reads the data from the
standard input (stdin) and splits the tab-limited
data into document-ID and contents of the
document.

• The map function emits key-value pairs where
key is each word in the document and value is
the document-ID.

Python for MapReduce

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

#Inverted Index Reducer in Python

#!/usr/bin/env python
import sys
current_word = None
current_docids = []
word = None

for line in sys.stdin:
remove leading and trailing whitespace
line = line.strip()
parse the input we got from mapper.py
word, doc_id = line.split(’’)
if current_word == word:

current_docids.append(doc_id)
else:

if current_word:
print ’%s%s’ % (current_word, current_docids)
current_docids = []
current_docids.append(doc_id)
current_word = word

• The example shows inverted index reducer
program.

• The key-value pairs emitted by the map phase
are shuffled to the reducers and grouped by the
key.

• The reducer reads the key-value pairs grouped
by the same key from the standard input (stdin)
and creates a list of document-IDs in which the
word occurs.

• The output of reducer contains key value pairs
where key is a unique word and value is the list
of document-IDs in which the word occurs.

 Python Packages of Interest

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

• JSON
• JavaScript Object Notation (JSON) is an easy to read and write data-interchange format. JSON is used as an alternative to XML

and is is easy for machines to parse and generate. JSON is built on two structures - a collection of name-value pairs (e.g. a
Python dictionary) and ordered lists of values (e.g.. a Python list).

• XML
• XML (Extensible Markup Language) is a data format for structured document interchange. The Python minidom library

provides a minimal implementation of the Document Object Model interface and has an API similar to that in other languages.

• HTTPLib & URLLib
• HTTPLib2 and URLLib2 are Python libraries used in network/internet programming

• SMTPLib
• Simple Mail Transfer Protocol (SMTP) is a protocol which handles sending email and routing e-mail between mail servers. The

Python smtplib module provides an SMTP client session object that can be used to send email.

• NumPy
• NumPy is a package for scientific computing in Python. NumPy provides support for large multi-dimensional arrays and

matrices

• Scikit-learn
• Scikit-learn is an open source machine learning library for Python that provides implementations of various machine learning

algorithms for classification, clustering, regression and dimension reduction problems.

 Python Web Application Framework - Django

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

• Django is an open source web application framework for developing web applications in Python.

• A web application framework in general is a collection of solutions, packages and best practices
that allows development of web applications and dynamic websites.

• Django is based on the Model-Template-View architecture and provides a separation of the data
model from the business rules and the user interface.

• Django provides a unified API to a database backend.

• Thus web applications built with Django can work with different databases without requiring any
code changes.

• With this fiexibility in web application design combined with the powerful capabilities of the Python
language and the Python ecosystem, Django is best suited for cloud applications.

• Django consists of an object-relational mapper, a web templating system and a regular-expression-
based URL dispatcher.

Django Architecture

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

• Django is Model-Template-View (MTV) framework.

• Model
• The model acts as a definition of some stored data and handles the interactions with the database. In a web

application, the data can be stored in a relational database, non-relational database, an XML file, etc. A Django model
is a Python class that outlines the variables and methods for a particular type of data.

• Template
• In a typical Django web application, the template is simply an HTML page with a few extra placeholders. Django’s

template language can be used to create various forms of text files (XML, email, CSS, Javascript, CSV, etc.)

• View
• The view ties the model to the template. The view is where you write the code that actually generates the web pages.

View determines what data is to be displayed, retrieves the data from the database and passes the data to the
template.

Django Setup on Amazon EC2

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

Further Reading

• boto, http://boto.readthedocs.org/en/latest/

• Python JSON package, http://docs.python.org/library/json.html

• Python socket package, http://docs.python.org/2/library/socket.html

• Python email package, http://docs.python.org/2/library/email

• Python HTTPLib, http://code.google.com/p/httplib2/

• Python URLLib, http://docs.python.org/2/howto/urllib2.html

• Python SMTPLib, http://docs.python.org/2/library/smtplib.html

• NumPy, http://www.numpy.org/

• Scikit-learn, http://scikit-learn.org/stable/

• Django, https://docs.djangoproject.com/en/1.5/

• Google App Engine, https://developers.google.com/appengine/

• Google Cloud Storage, https://developers.google.com/storage/

• Google BigQuery, https://developers.google.com/bigquery/

• Google Cloud Datastore, http://developers.google.com/datastore/

• Google Cloud SQL, https://developers.google.com/cloud-sql/

• AFINN, http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

• Tweepy Package, https://github.com/tweepy/tweepy

Bahga & Madisetti, © 2014Book website: www.cloudcomputingbook.info

